Part Number Hot Search : 
SQ2143 K1400 TIP145F ECG340 C30617 2SJ30409 MT29F1G CP650
Product Description
Full Text Search
 

To Download 10-FY07BIA041MF-M528E68 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FY07BIA041MF-M528E68 preliminary datasheet flowsol 1 bi 650v / 41mohm low inductive 12mm flow1 package booster: dual boost topology mosfet 650v/37mohm + ultrafast fwd bypass rectifier inverter: pseudo h-bridge topology mosfet 650v/41mohm cfd + ultrafast fwd integrated dc-capacitors temperature sensor solar inverter: 10-FY07BIA041MF-M528E68 repetitive peak reverse voltage v rrm 1600 v t h =80c 41 t c =80c 55 t h =80c 50 t c =80c 76 maximum junction temperature t j max 150 c input boost mosfet v ds 650 v t h =80c 35 t c =80c 42 t h =80c 105 t c =80c 159 t j max 150 c v maximum junction temperature gate-source peak voltage v gs 20 power dissipation p tot t j =t j max w a pulsed drain current i dpulse t p limited by t j max 297 a drain to source breakdown voltage dc drain current i d t j =t j max power dissipation per diode p tot t j =t j max w 370 a i2t-value i 2 t 370 a 2 s surge forward current i fsm t p =10ms t j =25c forward current per diode i fav dc current a high efficient transformer-less solar inverter with bipolar modulation types bypass diode features flow1 12mm housing target applications schematic 1 revision : 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet input boost diode t h =80c 27 t c =80c 35 t h =80c 49 t c =80c 74 pseudo h-bridge mosfet t h =80c 35 t c =80c 42 t h =80c 111 t c =80c 168 pseudo h-bridge diode t h =80c 27 t c =80c 36 t h =80c 49 t c =80c 74 dc link capacitor tc=25c thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm insulation voltage creepage distance clearance operation temperature under switching condition t op -40?+(tjmax - 25) c storage temperature t stg -40?+125 c max.dc voltage v max 630 v maximum junction temperature t j max 175 c a power dissipation per diode p tot t j =t j max w repetitive peak forward current i frm t p limited by t j max 180 v dc forward current i f t j =t j max a peak repetitive reverse voltage v rrm t j =25c 650 maximum junction temperature t j max 150 c gate-source peak voltage vgs 20 v 255 a power dissipation p tot t j =t j max w pulsed drain current i dpulse t p limited by t j max tc=25c dc drain current i d t j =t j max a drain to source breakdown voltage v ds 650 v maximum junction temperature t j max 175 c a power dissipation p tot t j =t j max w repetitive peak forward current i frm t p limited by t j max 180 v dc forward current i f t j =t j max a peak repetitive reverse voltage v rrm t j =25c 650 2 revision : 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1.18 1.21 t j =125c 1.17 t j =25c 0.91 t j =125c 0.80 t j =25c 0.008 t j =125c 0.010 t j =25c 0.05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1.40 k/w t j =25c 38 t j =125c 78 t j =25c 2.5 3 3.5 t j =125c t j =25c 100 t j =125c t j =25c 2000 t j =125c t j =25c 30 t j =125c 29 t j =25c 6 t j =125c 7 t j =25c 173 t j =125c 182 t j =25c 5 t j =125c 6 t j =25c 0.19 t j =125c 0.29 t j =25c 0.06 t j =125c 0.09 tj=25c 2.45 2.6 t j =125c 2.03 t j =25c 10 t j =125c t j =25c 60 t j =125c 70 t j =25c 15 t j =125c 41 t j =25c 0.71 t j =125c 1.35 t j =25c 0.18 t j =125c 0.38 di ( rec ) max t j =25c 13199 /d t t j =125c 9226 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1.94 k/w pf tj=25c tj=25c tj=25c tj=25c thermal grease thickness 50um  = 1 w/mk k/w 330 m ? v a i gss 0.0033 v (gs)th ns na v na a/ s c mws a ns mws nc 7240 30 170 10 400 rgon=2 ? reverse recovery time q rr reverse recovered energy reverse leakage current peak recovery current peak rate of fall of recovery current reverse recovery charge q gd 10 output capacitance gate to drain charge e off total gate charge t r t d(off) turn-on energy loss per pulse 40 static drain to source on resistance 380 49.6 0.67 33 35 1600 i r v v ? ma 35 35 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t bypass diode 0 t d(on) rgoff=2 ? c iss r thjh c oss turn on delay time rise time turn off delay time value conditions reverse current gate threshold voltage gate to source leakage current zero gate voltage drain current forward voltage input boost diode e rec t rr i rrm v f i rm t f fall time turn-off energy loss per pulse input capacitance e on q gs thermal resistance chip to heatsink per chip q g i dss input boost mosfet gate to source charge r ds(on) 20 10 0 400 10 480 650 0 100 rgon=2 ? rgon=2 ? f=1mhz 10 30 30 30 400 3 revisio n: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 45 t j =125c 84 t j =25c 3.5 4 4.5 t j =125c t j =25c 100 t j =125c t j =25c 3500 t j =125c t j =25c 37 t j =125c 35 t j =25c 6.6 t j =125c 7.8 t j =25c 145 t j =125c 153 t j =25c 3.6 t j =125c 3.2 t j =25c 0.19 t j =125c 0.31 t j =25c 0.05 t j =125c 0.05 t j =25c 2.46 2.6 t j =125c 2.02 t j =25c 56 t j =125c 61 t j =25c 15 t j =125c 43 t j =25c 0.62 t j =125c 1.29 di ( rec ) max t j =25c 10369 /d t t j =125c 10454 t j =25c 0.15 t j =125c 0.35 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1.94 k/w k/w thermal grease thickness 50um  = 1 w/mk b 3950 k k vincotech ntc reference tj=25c b-value b (25/100) tol. 3% 3996 tj=25c tj=25c rgon=2 ? b-value b (25/50) tol. 3% 300 tj=25c tc=100c tc=100c tj=25c -5 na c a ns pf a/ s v 165 30 dc link capacitor c 0 rgoff=2 ? r100=1486 ? rated resistance r thermistor c value % mw 200 2 power dissipation constant power dissipation p r/r deviation of r25 mw/k 100 10 0.63 r thjh 54 gate threshold voltage turn off delay time rise time gate to source leakage current turn on delay time zero gate voltage drain current static drain to source on resistance pseudo h-bridge mosfet fall time t f total gate charge input capacitance gate to drain charge gate to source charge turn-off energy loss per pulse turn-on energy loss per pulse e off q g nc v na m ? ns mws 8400 400 c iss c oss output capacitance thermal resistance chip to heatsink per chip reverse recovered charge peak rate of fall of recovery current e rec reverse recovery time pseudo h-bridge diode diode forward voltage q rr t rr peak reverse recovery current v (gs)th i gss t r t d(off) e on rgon=2 ? t d(on) r ds(on) i dss q gs f=1mhz q gd 0 v f i rrm reverse recovery energy 20 10 10 v ds =v gs 0 0.0033 49.6 30 33 tj=25c tj=25c 22000 +5 nf 47 ? mws 650 400 480 4 revisio n: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 0 v to 20 v in steps of 2 v v ge from 0 v to 20 v in steps of 2 v figure 3 mosfet figure 4 fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v pseudo h-bridge typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 10 20 30 40 02468 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0246810 v f (v) i f (a) t j = 25c t j = t j ma x -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 5 revis ion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 2 ? i c = 30 a r goff = 2 ? figure 7 fwd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 2 ? i c = 30 a pseudo h-bridge e on high t e off high t e on low t e off low t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 r g ( ? ) e (mws) e rec low t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 02 03 04 05 06 0 i c (a) e (mws) e rec high t e rec high t e rec low t 0.0 0.1 0.2 0.3 0.4 0 5 10 15 20 r g ( ? ) e (mws) 6 revis ion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 2 ? i c = 30 a r goff = 2 ? figure 11 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v ge = 10 v pseudo h-bridge t doff t f t don t r 0.00 0.01 0.10 1.00 0 102030405060 i c (a) t (ms) t rr high t t rr low t 0.00 0.03 0.06 0.09 0.12 0.15 0 5 10 15 20 r gon ( ? ) t rr (ms) t doff t f t don t r 0.00 0.01 0.10 1.00 0 5 10 15 20 r g ( ? ) t (ms) t rr high t t rr low t 0.00 0.02 0.04 0.06 0.08 0 102030405060 i c (a) t rr (ms) 7 revis ion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v ge = 10 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v ge = 10 v pseudo h-bridge i rrm high t i rrm low t 0 20 40 60 80 0 5 10 15 20 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 0.3 0.6 0.9 1.2 1.5 0 5 10 15 20 r gon ( ? ) q rr (mc) i rrm high t i rrm low t 0 20 40 60 80 0 102030405060 i c (a) i rrm (a) q rr low t 0.0 0.5 1.0 1.5 2.0 0 1 02 03 04 05 06 0 i c (a) q rr (mc) q rr high t 8 revis ion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v ge = 10 v figure 19 mosfet figure 20 fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0.63 k/w r thjh = 1.94 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0.04 5.1e+00 0.05 6.0e+00 0.08 1.0e+00 0.14 8.1e-01 0.30 2.1e-01 0.72 1.4e-01 0.14 8.6e-02 0.42 4.5e-02 0.03 1.3e-02 0.33 1.0e-02 0.02 1.4e-03 0.19 1.8e-03 pseudo h-bridge t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 4000 8000 12000 16000 20000 0 4 8 12 16 20 r gon ( ? ) di rec / dt (a/ms) di rec /dt t di 0 /dt t di 0 /dt t di rec /dt t 0 2000 4000 6000 8000 10000 12000 0 102030405060 i c (a) di rec / dt (a/ms) 9 revis ion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c pseudo h-bridge 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 10 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 50 a th = 80 oc v ge = 15 v t j =t jmax oc pseudo h-bridge v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 0 50 100 150 200 250 300 q g (nc) v ge (v) 120v 480v 11 revision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 1 boost mosfet figure 2 boost mosfet typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v gs from 3 v to 13 v in steps of 1 v v gs from 3 v to 13 v in steps of 1 v figure 3 boost mosfet figure 4 boost fwd typical transfer characteristics typical diode forward current as i d = f(v gs ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ds = 10 v input boost 0 50 100 150 200 250 300 0246810 v f (v) i f (a) t j = 25c t j = t j ma x -25c 0 10 20 30 40 0123456 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 012345 v ce (v) i c (a) 0 20 40 60 80 100 120 012345 v ce (v) i c (a) 12 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 5 boost mosfet figure 6 boost mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i d = 30 a r goff = 2 ? figure 7 boost fwd figure 8 boost fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i d = 30 a r goff = 2 ? input boost e rec high t e rec low t 0 0.2 0.4 0.6 0.8 0 1 02 03 04 05 06 0 i c (a) e (mws) e rec high t e rec low t 0 0.1 0.2 0.3 0.4 0.5 0 5 10 15 20 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0.1 0.2 0.3 0.4 0.5 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0.2 0.4 0.6 0.8 1 0 4 8 12 16 20 r g ( ) e (mws) 13 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 9 boost mosfet figure 10 boost mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 2 ? i c = 30 a r goff = 2 ? figure 11 boost fwd figure 12 boost fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v gs = 10 v input boost t doff t f t don t r 0.001 0.01 0.1 1 0 1 02 03 04 05 06 0 i d (a) t ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 5 10 15 20 r g ( ) t ( s) t rr high t t rr low t 0 0.02 0.04 0.06 0.08 0.1 0.12 0 5 10 15 20 r gon ( ) t rr ( s) t rr high t t rr low t 0 0.02 0.04 0.06 0.08 0 1 02 03 04 05 06 0 i c (a) t rr ( s) 14 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 13 boost fwd figure 14 boost fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =30 a r gon = 2 ? v gs =10 v figure 15 boost fwd figure 16 boost fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 30 a r gon = 2 ? v gs = 10 v input boost i rrm high t i rrm low t 0 20 40 60 80 100 0 5 10 15 20 r gon ( ) i rrm (a) q rr high t q rr low t 0 0.3 0.6 0.9 1.2 1.5 0 4 8 12 16 20 r gon ( ) q rr ( c) i rrm high t i rrm low t 0 20 40 60 80 100 0 102030405060 i c (a) i rrm (a) q rr high t q rr low t 0 0.5 1 1.5 2 2.5 0 1 02 03 04 05 06 0 i c (a) q rr ( c) 15 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 17 boost fwd figure 18 boost fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =30 a r gon = 2 ? v gs =10 v figure 19 boost mosfet figure 20 boost fwd igbt/mosfet transient thermal impeda nce fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0.67 k/w r thjh = 1.94 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 3.56e-02 5.26e+00 4.65e-02 5.96e+00 8.98e-02 9.94e-01 1.38e-01 8.06e-01 3.76e-01 1.88e-01 7.19e-01 1.42e-01 1.04e-01 6.08e-02 4.17e-01 4.54e-02 3.74e-02 1.20e-02 3.26e-01 1.02e-02 2.56e-02 9.33e-04 1.85e-01 1.84e-03 input boost di 0 /dt t di rec /dt t 0 5000 10000 15000 20000 0 4 8 12 16 20 r gon ( ) di rec / dt (a/ s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0 3000 6000 9000 12000 15000 0 102030405060 i c (a) di rec / dt (a/ s) 16 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 21 boost mosfet figure 22 boost mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 23 boost fwd figure 24 boost fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc input boost 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 17 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 25 boost mosfet figure 26 boost mosfet safe operating area as a function gate voltage vs gate charge of drain-source voltage i d = f(v ds )v gs = f(qg) at at d = single pulse i d = 50 a t h = 80 oc v gs = 10 v t j =t jmax oc input boost v ds (v) i d (a) 10 3 10 0 10 1 10 2 10 3 1 0 0 10us 100us 1ms 10ms 100ms dc 10 2 10 1 0 2 4 6 8 10 0 50 100 150 200 250 300 350 qg (nc) u gs (v) 120 v 480 v 18 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1.397 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc bypass diode 0 10 20 30 40 50 60 70 0 0.3 0.6 0.9 1.2 1.5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) 19 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? 20 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet t j 125 c r g on 2 ? r goff 2 ? figure 1 h-bridge mosfet figure 2 h-bridge mosfet turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 30 a i c (100%) = 30 a t doff = 0.15 s t don = 0.04 s t eoff = 0.18 s t eon = 0.07 s figure 3 h-bridge mosfet figure 4 h-bridge mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 30 a i c (100%) = 30 a t f = 0.00 s t r = 0.01 s switching definitions h-bridge mosfet general conditions = = = i c 1% v ce 90% v ge 90% -50 0 50 100 150 -0.1 -0.05 0 0.05 0.1 0.15 0.2 time (us) % t doff t eof f v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 300 4.3 4.38 4.46 4.54 4.62 4.7 4.78 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -100 -50 0 50 100 150 0.08 0.09 0.1 0.11 0.12 0.13 0.14 time (us) % v ce i c t f i c 10% i c 90% -100 0 100 200 300 4.5 4.51 4.52 4.53 4.54 4.55 4.56 time(us) % t r v ce i c 21 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 5 h-bridge mosfet figure 6 h-bridge mosfet turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 12.15 kw p on (100%) = 12.15 kw e off (100%) = 0.05 mj e on (100%) = 0.31 mj t eoff = 0.18 s t eon = 0.07 s figure 7 h-bridge mosfet figure 8 h-bridge fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 400 v v geon = 10 v i d (100%) = 30 a v c (100%) = 400 v i rrm (100%) = -61 a i c (100%) = 30 a t rr = 0.04 s q g = 186.04 nc switching definitions h-bridge mosfet i c 1% v ge 90% -50 0 50 100 150 -0.1 0 0.1 0.2 time (us) % p off e of f t eoff v ce 3% v ge 10% -50 0 50 100 150 200 4.45 4.49 4.53 4.57 4.61 time(us) % p on e on t eon -10 -5 0 5 10 15 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -250 -200 -150 -100 -50 0 50 100 150 4.5 4.52 4.54 4.56 4.58 4.6 time(us) % i d v d fitted 22 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet figure 9 h-bridge fwd figure 10 h-bridge fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 30 a p rec (100%) = 12.15 kw q rr (100%) = 1.29 c e rec (100%) = 0.35 mj t qrr = 0.09 s t erec = 0.09 s switching definitions h-bridge mosfet t qrr -200 -150 -100 -50 0 50 100 4.5 4.53 4.56 4.59 4.62 4.65 time(us) % i d q rr -50 0 50 100 150 4.5 4.53 4.56 4.59 4.62 4.65 time(us) % p rec e rec t erec 23 rev ision: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FY07BIA041MF-M528E68 m528e68 m528e68 pins 3,4,9,12 are not connected. pinout ordering code & marking ordering code and marking - outline - pinout o utline 24 revi sion: 1 copyright by vincotech
10-FY07BIA041MF-M528E68 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. 25 revis ion: 1 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 10-FY07BIA041MF-M528E68

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X